
February 23, 2007

Finding More Null Pointer Bugs, But Not Too Many

David Hovemeyer
Dept. of Physical Sciences

York College of Pennsylvania
dhovemey@ycp.edu

William Pugh
Dept. of Computer Science

Univ. of Maryland
pugh@cs.umd.edu

Abstract
In the summer of 2006, the FindBugs project was challenged im-
prove the null pointer analysis in FindBugs so that we could find
more null pointer bugs. In particular, we were challenged to try to
do as well as a publicly available analysis by Reasoning, Inc on
version 4.1.24 of Apache Tomcat. Reasoning uses their own static
analysis tool, followed by manual auditing and removal of false
positives before a report is given to their customers. Reasoning re-
ported a total of 9 null pointer warnings in Tomcat 4.1.24, of which
only 2 were reported by FindBugs 1.0. While we wanted to improve
the analysis in FindBugs, we wanted to retain our current low level
of false positives, and not depend on manual suppression of false
positives before getting high quality results we were happy to show
to developers.

As of result of the work presented in this paper, FindBugs
now reports 4 of the 9 warnings in Tomcat, shows that one of the
warnings reported by Reasoning is a false positive, and classifies
the remaining 4 as being dependent on the feasibility of a particular
path, which cannot be easier ascertained by a local examination
of the source code. Moreover, we found 24 additional null pointer
bugs in Tomcat that had been missed by Reasoning, and overall
doubled the number of null pointer bugs found by FindBugs while
improving the quality and significance of the defects we do report.

1. Introduction
In the summer of 2006, David Morgenthaler challenged the Find-
Bugs project to improve the null pointer analysis in FindBugs.
David Morgenthaler had been previously employed at Reasoning,
a company that provided static analysis for software defect detec-
tion as a service. Dr. Morgenthaler was now employed by Google,
where among other duties he was evaluating static defect detec-
tion tools for use at Google. Reasoning had previously made public
[7] a sample of the output of their services on version 4.1.24 on
Apache Tomcat [1]. Reasoning had applied their own static analy-
sis tool and after filtering out the warnings they believed to be false
positives reported 9 null pointer bugs. FindBugs 1.0 reported only
two of the warnings reported by Reasoning. For some time we had
wanted to improve our analysis to find more defects, and this would
provide additional motivation and test cases.

The static analysis tool used by Reasoning could have a much
higher false positive rate than was acceptable for FindBugs, since
they performed internal manual suppression of false positives be-
fore results were shown to customers. In particular, the issue of
infeasible paths is a standard problem for static analysis. Consider,
for example:

PrintWriter log = null;
if (anyLogging) log = new PrintWriter(...);
if (detailedLogging) log.println("Log started");

This code will throw a null pointer exception if anyLogging is
false and detailedLogging is true. The names of these boolean
variables suggest that this situation cannot arise at runtime. but
verifying that through static analysis might be difficult. As we
can see in this example, the infeasible path problem involves a
path through the program that depends on at least two branches.
Even if both branches can be decided in both directions (true and
false), they both have to be decided in a correlated way in order
for the potential null-pointer bug to manifest itself. To address this
problem, static analysis tools can compute path conditions—the
conditions that must be true in order for the path to be executed. If
the analysis can show that the path conditions are infeasible, then
the potential defect is also shown to be infeasible. In the following
modification of the above example, the path condition for the null
pointer exception is logLevel ≤ 0 ∧ logLevel > 3, which can
shown to be infeasible by appropriate techniques.

PrintWriter log = null;
if (logLevel > 0) log = new PrintWriter(...);
if (logLevel > 3) log.println("Log started");

Unfortunately, many infeasible path conditions are not easy to
disprove. Rather than worrying about disproving path conditions,
FindBugs 1.0 used a null pointer analysis that reported a warn-
ing if there was a statement or branch in a program that, if exe-
cuted/taken, would guarantee that a null pointer exception would
occur. Since programmers strive to avoid writing unreachable code
and redundant conditional tests, the existence of such a statement or
branch is a good indicator of programming defect. If the statement
or branch is unreachable, then that is generally taken as evidence of
a programming fault that warrants correction, to improve the per-
formance and understandability of the code.

In this paper, we describe several techniques we developed
and implemented in more recent versions of FindBugs in order to
find more null pointer bugs, while retaining the property that null
pointer warnings are only emitted if a branch or statement exists
that if executed would guarantee a null pointer exception. Com-
bined with strengthened analysis to track null values in fields, these
improvements roughly double the number of null pointer defects
found by FindBugs. Our improved analysis is substantially better
than analysis based on proving the feasibility of path conditions at
producing easy-to-understand warnings.

Going back to the challenge from Dr. Morgenthaler, we found 2
more of the null pointer bugs reported by Reasoning and disproved
one of them. The remaining 4 are dependent upon the feasibility of
path conditions that cannot be easily checked.

2. Reasoning report on Tomcat
Table 1 gives the null pointer warnings reported [7] by Reasoning.
Figures 1, 2, and 3 show part of the code for the defects numbers



322 while(it.hasNext()) {
323 Object elt = it.next();
324 if((null == obj && null == elt)

|| obj.equals(elt)) {
325 count++;
326 }

Figure 1. Defect 01

519 HttpServletRequest hreq = null;
520 if (req instanceof HttpServletRequest)
521 hreq = (HttpServletRequest) req;
522
523 if (isResolveHosts())
524 result.append(req.getRemoteHost());
525 else
526 result.append(req.getRemoteAddr());
...
551 result.append(hreq.getMethod());

Figure 2. Defect 08

889 HttpServletRequest hreq = null;
890 if (req instanceof HttpServletRequest)
891 hreq = (HttpServletRequest) req;
892
893 switch (type) {
...
905 case ’c’:
906 Cookie[] c = hreq.getCookies();

Figure 3. Defect 09

01, 08, and 09, respectively, by Reasoning. The defect numbers
are those assigned by Reasoning, which also include 3 array bound
errors, 12 resource leaks and 2 bad string comparisons.

Figure 1 is a relatively simply bug that was found by the null
pointer analysis in FindBugs 1.0 [5]: if the test null == elt
evaluates to false, we are guaranteed to get a null pointer exception
when we dereference obj by invoking the equals method on it.

Figure 2 is a bug we want to report, but the analysis in [5]
doesn’t. If the test on line 520 fails, we are guaranteed to get a
null pointer exception at line 551 (assuming no other exceptions
prevent us from reaching line 551). However, there is no simple
path1 from the else branch of line 520 to line 551. The conditions
at lines 523, 530 and 532 mean that there are 8 different paths from
line 520 to line 551, and each of these paths have path conditions
that traditional analysis would try to show are feasible or infeasible.

Figure 3 is a warning we do not wish to report in FindBugs.
This null pointer exception can occur only if is it simultaneously
possible for req to not be a HttpServletRequest and for type
= ’c’. This is exactly the kind of infeasible path problem that we
were concerned about. Clearly, this defect should be prioritized
below defects 01 and 08, and at this point, we don’t want to report
this potential defect in FindBugs at all.

3. Improving null analysis
While the most significant changes to our analysis were partially
motivated by the challenge of improving our results on Tomcat, we

1 We define a simple path to be one in which there are no conditional
branches.

actually made quite a number of changes to our null pointer anal-
ysis since FindBugs 1.0. This section summarizes them, notes the
impact on the number of warnings we report on Eclipse and Sun’s
1.6 JVM implementation, and notes the connection to improving
our results on Tomcat.

3.1 Warnings removed
FindBugs no longer reports a number of warnings reported by
FindBugs 1.0. There are four basic reasons for this:

• Suppression of warnings inside try/catch blocks We found
a number of cases where code could perform a null pointer
dereference, but the code was inside a small try/catch block that
was designed to anticipate and handle that situation.

• Better handling of assertions. In particular, FindBugs now
analyzes code as if assertion checking is always enabled. This
means that we will treat assert x != null; as an assertion
that x is nonnull, since the analysis understands the successor
of that statement can be reached only if x is nonnull.

• Better handling of panic methods. We’ve seen a fair num-
ber of false positives caused by code such as if (x == null)
panic(); followed by a dereference of x. Unless FindBugs
understands that the panic() method won’t return normally, it
will report a null pointer defect here. We can’t simply match
on the name panic, since different projects use different names
for such methods. We also unfortunately can’t depend on only
checking to see if the method returns normally, because some
systems have methods that log a fatal error message and then
return normally. This is a place where we have done some cus-
tom modeling of specific panic methods we have encountered
in different frameworks, but encourage users of FindBugs to
improve their analysis results by specifying any unique panic
methods used in their own codebase.

• Better modeling of the JDK. FindBugs incorporates a model
of which method parameters and return values in the core API
methods must be nonnull. Violations of these API specifications—
such as passing a possibly-null value to a method requiring a
nonnull parameter, or returning a possibly-null value from a
method declared to return a non-null value—are reported as
warnings. An improved modeling of which JDK methods al-
ways return nonnull values eliminated some false positives. For
one package of the JDK, java.util.concurrent, we have
modeled all the method parameters as taking nonnull parame-
ters unless explicitly specified otherwise. Additional methods
were introduced into that package after FindBugs 1.0 were
released, and thus FindBugs 1.0 wrongly marked some b105
methods as requiring nonnull parameters. This is something of
an artificial case, due to the explicit modeling of the JDK in
FindBugs.

3.2 Warnings reclassified
FindBugs 1.0 reported a null pointer correctness bug if the equals(Object)
method would throw a null pointer exception if given a null argu-
ment (it should return false). In FindBugs 1.1, this was reclassified
as a bad practice bug, rather than a correctness bug. While it is
fairly easy to make the case that this is incorrect code, we found
that developers didn’t want to wade through these warnings when
performing correctness bug triage. In general, each project or orga-
nization should adopt a rule as to whether this bad practice is ac-
ceptable. Similarly, we also reclassified clone() and toString()
methods returning a null value as bad practices rather than correct-
ness bugs.



# FB 1.0 FB 1.1+ library File line
01 yes yes commons-collections-2.1 CollectionUtils.java 324
05 no no, path-dependent tomcat-4.1.24 StandardWrapperValve.java 185
08 no yes tomcat-4.1.24 AccessLogValve.java 551
09 no no, path-dependent tomcat-4.1.24 AccessLogValve.java 906
10 no no, path-dependent tomcat-4.1.24 CertificatesValve.java 385
18 yes yes jakarta-tomcat-connectors IntrospectionUtils 847
19 no no, disproven jakarta-tomcat-connectors IntrospectionUtils 847
20 no no, path-dependent jakarta-tomcat-connectors IntrospectionUtils 912
21 no yes jakarta-tomcat-connectors IntrospectionUtils 915

Table 1. Null pointer warnings reported by Reasoning

3.3 More accurate modeling of core API methods
In going from FindBugs 1.0 to FindBugs 1.2.0, we have improved
our modeling of which methods in the core Java API classes re-
quire non-null values. Some of the improvements come from ex-
plicit marking (using annotations) of methods that require non-
null parameters. Others depend upon an iterative application of
our guaranteed dereference computation to determine method pa-
rameters that are always dereferenced (or passed to methods that,
in turn, dereference them). Our guaranteed dereference computa-
tion improved in FindBugs 1.2.0, and we don’t separately break
out which improvements came from explicit marking and which
came from computation of guaranteed dereferences. In both cases,
the new bugs that are reported due to these improvements involve
passing a possibly-null value as an argument to a method that will
unconditionally dereference it.

3.4 Reporting of errors on exception paths
FindBugs 1.0 contained an error in how it tracked potential null
pointer dereferences on exception paths. Since the quality of the
results wasn’t very good, they were only being reported at a low
priority level warnings (which are usually ignored as they are in
this paper). One we fixed this problem, we were able to report those
warnings as medium priority warnings.

3.5 Field tracking
We added limited tracking of static and instance fields in order to
detect more cases where a null value could be loaded from a field.
We ignore aliasing, don’t track volatile fields, and assume that any
method call could modify any field of any object passed to the
method call. We also assume that any synchronization could cause
all non-final fields to change.

3.6 Guaranteed Dereferences
While all of the things we’ve described are useful, none of the
address the defects in Tomcat that we wanted to catch. In addition to
the forwards data flow analysis used in FindBugs 1.0 [5], we added
a backwards dataflow analysis of which values are guaranteed
to be dereferenced on all non-exceptional paths to exit. We had
already done a version of this analysis to determine which method
parameters are unconditionally dereferenced, but we made some
substantial improvements to it and also now incorporate it into our
intraprocedural null pointer analysis. In Defect 08, the backwards
propagation tells us that at else branch of the test on line 521, the
current value of hreq is guaranteed to be dereferenced. When the
backwards propagation of values guaranteed to be dereferenced
encounters a statement or branch where that value is guaranteed
to be null, we report an error.

We only consider non-exceptional paths due to the multitude of
places that could throw an exception in a Java program. There are
very few places where there is a value that is guaranteed to be deref-

Figure 4. Propagating a guaranteed dereference backwards across
a φ-node. (Dashed arrows show direction of propagation.)

erenced on all paths to method exit, including those paths caused by
a runtime exception or an exception thrown by an invoked method.

4. Implementation notes
Our null-pointer analysis is based on a forward dataflow analysis
that approximates static single assignment form (SSA) for values in
local variables and on the operand stack. Specifically, the analysis
tries to detect all cases where two values in local variables or the
operand stack are the same, and assign such values the same “value
number”. When two distinct values in the same local variable or
operand stack location are merged as the result of a control join,
the analysis creates a fresh value number distinct from any existing
value number. Such join points are analogous to φ-nodes in SSA.

We compute the guaranteed dereferences as a backwards dataflow
problem over our SSA approximation. At each program location
where a value is dereferenced, we consider adding that value num-
ber to the set of values guaranteed to be dereferenced. As an opti-
mization, we omit any dereference that occurs at a location where
the dereferenced value is definitely non-null; such dereferences can
be safely ignored. If a value is dereferenced at a location where the
value is guaranteed to be null, we report the error directly without
needing to perform propagation.

When the guaranteed dereference analysis encounters a φ-node
going backwards, it must rewrite the dereferenced value sets on
each control edge leading into the φ-node to translate from the
value number assigned by the φ-node to the corresponding input
value to the φ-node. This is illustrated in Figure 4.

The category of program locations we denote as “dereferences”
are more inclusive than actual dereferences (i.e., instructions with
a built-in null check); they are any location where a null value has
a high likelihood of causing a null pointer exception. For example,
we also count as dereferences passing a value to a parameter that



must be nonnull, returning a value from a method that must return
a nonnull value, and storing a value into a field that has been
annotated as nonnull.

We treat conditional branches on nullness specially. Specif-
ically, in computing the guaranteed dereferences that propagate
backwards from an if (x == null), for the value in x we check
to see if x is guaranteed to be dereferenced just on the true branch
and ignore the else branch. Other values are marked as having a
guaranteed dereference only if they have a guaranteed dereference
on both branches.

4.1 Reporting defects
As part of our backwards guaranteed-dereference dataflow anal-
ysis, we compute, for each distinct known-null value, the set of
locations such that one location in the set is guaranteed to derefer-
ence the value on a non-exception path to the method exit. Thus,
when a guaranteed dereference and a known null value collide, we
can report a warning that gives both the location where the value is
known to be null and the set of locations, one of which is guaran-
teed to dereference it.

We prune the set of locations guaranteed to dereference the
value: if the set contains both locations x and y, and y postdom-
inates x, then remove x from the set of locations that are reported.
This is rather effective, and in the vast majority of cases we can
report a single location at which a dereference is guaranteed.

Although our analysis does not find as many bugs as purely
path-based approaches, it has the considerable advantage that the
bugs reported are easy to understand. A path-based analyzer might
find many paths between a location where a value is known to
be null and a dereference of that value. Reporting all paths might
overwhelm the user, while picking one path arbitrarily might result
in reporting an infeasible path. Our analysis reports warnings the
user can verify with relative ease, since the null value mentioned by
the warning is guaranteed to be dereferenced at one of the reported
locations (unless an exception occurs).

4.2 Defect prioritization
FindBugs uses a number of heuristics in trying to prioritize defect
warnings. As mentioned, we only report a null pointer warning if
there is a statement or branch that, if executed/taken, guarantees
a null pointer exception, assuming our program model is correct2.
We further refine this by raising the priority of any warning where
there is a statement that, if executed, guarantees the null pointer
exception. In our auditing of defect warnings we have found a fair
number of cases where developers write conditional tests that they
never expect to be fully covered. However, we have it found it much
rarer for developers to intentionally write statements that they never
expect to be executed.

5. Results
We were quite happy with the results of our new analysis. Table
1 notes the changes in our results on the warnings reported by
Reasoning. In addition to reporting two more of the defects found
by Reasoning, we report 24 additional null pointer defects missed
by Reasoning. Figure 5 shows an interesting example of a defect
found by the new analysis in Tomcat but not reported by Reason-
ing. FindBugs reports that if container is null on line 549, then
container will be dereferenced at either line 552 or line 555. In
fact, only the dereference at line 555 is feasible if container is
null. When asked about this example, Dr. Morgenthaler said that
Reasoning static analysis tool had reported a potential null pointer

2 Our program model could be wrong due to field aliasing, not understand-
ing which methods modify which functions, or not understanding when ex-
ceptions will be thrown and execution will not continue normally

// org.apache.cataline.core.StandardPipeline:
546 protected void log(String message) {
547
548 Logger logger = null;
549 if (container != null)
550 logger = container.getLogger();
551 if (logger != null)
552 logger.log(... + container.getName()
553 + "]: " + message);
554 else
555 System.out.println(... + container.getName()
556 + "]: " + message);
557
558 }

Figure 5. Null pointer bug missed by Reasoning

// sun.awt.X11.XMSelection
// lines 242-246
public synchronized void removeSelectionListener(

XMSelectionListener listener) {
if (listeners == null) {

listeners.remove(listener);
}

}

Figure 6. The Null Pointer Bug That Didn’t Bark

exception on the path from line 549 to line 552, but had not re-
ported a potential null pointer exception on a path from line 549 to
line 555. Since the NPE at line 552 was infeasible, they filtered it
out.

Table 2 shows the overall changes in our results on Sun’s JDK
1.6.0-b105 and Eclipse 3.2.1. This table details the changes in
the high/medium priority null pointer correctness warnings about
paths where a value is known to be null and guaranteed to later
be used in a way that required it to be nonnull. and elsewhere is
to roughly double the number of null pointer warnings we report,
while improving the quality of the defects we report. Because Java
is a memory-safe language, not all of these defects are important,
and trying to identify the important null pointer defects is ongoing
work. Figure 6 shows an interesting situation where the most severe
impact of the defect is felt when the null pointer exception does not
occur. If a listener is removed before any have been added, a null
pointer exception will occur. But that situation seems unlikely and
if it does occur, hopefully the null pointer exception will get logged
and reported, leading to the software being fixed. However, in the
typical case, where a listener is removed after having been added,
the impact of the defect is to make removal of listeners fail silently.

5.1 Other Analysis Tools
This section tries to provide some understanding of where the
current FindBugs analysis fits in the world of static analysis for
null pointers. It is important to understand that there is no one way
to design a null pointer analysis. FindBugs has been tuned to have
a very low false positive rate, so that it can be reasonably applied to
multi-million line programs. Other tools have made different trade
offs for false negatives and false positives.

One comparison is to examine the total number of warnings re-
ported for a large code base. Table 3 reports the number of null
pointer warnings generated by various static analysis tools on Sun’s
jdk1.6.0-b105. The FindBugs numbers in this table differ from the
number in 2 because this table includes all medium/high priority



Eclipse JDK Explanation
101 70 Number of NP correctness warnings reported by FindBugs 1.0
-16 -20 Warnings removed due to bug fixes and better modeling of asserts, panic methods, JDK libraries
-23 -13 Warnings about equals method not handling null reclassified as bad practice
+8 +38 New warnings due to better modeling of JDK libraries
+3 +16 New warnings due to fix in tracking of null dereferences on exception paths

+37 +12 New warnings that required field tracking
+50 +17 New warnings that required guaranteed dereferences
+13 +1 New warnings that required both field tracking and guaranteed dereferences
173 121 Number of NP correctness warnings reported by FindBugs 1.2.0-dev

Table 2. Changes in null pointer warnings between FindBugs 1.0 and 1.2.0-dev

// 5 intraprocedural microbenchmarks
// for null pointer defect detection
// Each of these contains a defect
//
// Some microbenchmarks also have a variant that
// is a false positive.
// Substitute the operator or expression
// in the /* comments */ to get a version
// with no defect: reporting a warning
// in those cases is a false positive

int intra1(int level) {
Object x = null;
if (level > 0)

x = new Object();
if (level < /* > */ 4)

return x.hashCode();
return 0;

}

int intra2(boolean b) {
Object x = null;
if (b) x = new Object();
if (!b /* b */) return x.hashCode();
return 0;

}

int intra3(Object x) {
Object y = null;
if (x != null)

y = new Object();
if (y != null)

return x.hashCode() + y.hashCode();
else

return x.hashCode() /* 0 */ ;
}

int intra4(boolean b) {
Object x = null;

Object y = null;
if (b) x = "x";
if (x != null) y = "y";
if (y != null)

return x.hashCode() + y.hashCode();
else

return x.hashCode() /* 0 */;
}

int intra5(Object x) {
if (x == null) {

return x.hashCode();
}
return 0;

}

int intra6(Object x) {
if (x == null) {

Object y = x;
return y.hashCode();

}
return 0;

}

int inter1(boolean b) {
Object x = null;
if (b /* !b */ ) x = new Object();
return helper1(x, b);

}

int inter2() {
return helper2(null);

}

int inter3(boolean b) {
Object x = null;

if (b) x = "x";
return helper2(x);

}

// Bug when x is null and b is false
private int helper1(Object x, boolean b) {

if (b) return 0;
return x.hashCode();

}

private int helper2(Object x) {
return x.hashCode();

}

Figure 7. Null pointer microbenchmarks, v2



intraprocedural cases interprocedural
1 2 3 4 5 6 1 2 3

CodeSonar v,f v,f v,f v,f v,f v,f v,f v,f v,f
Eclipse vv vv vv vv v v
FindBugs v,f v,f v,f v,f v v
Fortify vv,ff vv,ff vv,ff vv,ff v,f v,f
IntelliJ vv,ff v,f v,f vv,ff v,f v,f
Jtest v,f v,f v,f v,f v,f v,f v,f
Klocwork∗

* - due to licensing terms, Klocwork results can not be disclosed

Table 4. Microbenchmark, v2, results from different tools

# Tools
182 FindBugs 1.2.0-dev

1,018 Eclipse 3.3M2
272 IntelliJ 6.0.4

Table 3. Null pointer warnings on JDK

correctness null pointer warnings, including warnings about un-
written fields being read and dereferenced and about values being
dereferenced and later checked to see if they are null.

Now, no particular number of warnings is right or wrong. Both
IntelliJ and Eclipse undoubtedly correctly report some null pointer
defects that are missed by FindBugs. However, the number of warn-
ings reported by Eclipse make the idea of systematically reviewing
null pointer warnings reported by Eclipse tools on a large software
project a daunting task.

To further clarify the differences, we devised a series of null
pointer microbenchmarks, give in Figure 7 and in a Subversion
repository [6]. It is important to note that this is a microbenchmark,
designed to elucidate certain aspects of how null pointer analysis
works rather than to gauge the effectiveness or value of an analysis.
We analyzed both this class, and a variant in which x is an instance
field rather than a local variable. The results from several different
analysis tools are reported in Table 4. An entry of v shows that the
tool reported a warning for the version of the benchmark where x is
a local variable, and where the defect is actually possible. An entry
of vv shows that a defect is reported in both the true positive and
false positive case. Entries of f and ff note the results in x is a field.

Several notes about the results in this table. Klocwork makes a
trial version of their analysis tool freely available on their website,
but their license strictly prohibits us from disclosing any informa-
tion about the capabilities of their tool. We have left a blank line for
Klocwork and encourage readers to download the Klocwork tool
and fill in their own results. Fortify Software notes that a revision
planned for release this summer incorporates some null pointer in-
terprocedural analysis. Coverity declined to share any information
on their tool. CodeSonar from GrammaTech, a tool for C/C++, does
an exceptionally precise job on a C++ version of the benchmark, as
appropriate for a defect detection tool designed for a language that
lacks memory safety. Jtest 8.0 from Parasoft don’t report defects
in two cases in the microbenchmark because they decided not to
report potential defects when the only reason to believe that the
value might be null is that it was previously compared to null. They
report that their users felt that doing so generated too many false
positives, but they have decided to modify their analysis to allow
users to select whether to report potential defects in these cases.

6. Related work
There have been quite a number of papers on static analysis for de-
fect detection, and many of these [4, 3, 2] touch substantially but

not exclusively on finding null pointer defects. We previously pub-
lished work [5] on the null pointer bug detection used in FindBugs
1.0.

7. Conclusions
Since our work is done in the context of a memory safe language,
the impact of null pointer errors is typically much less significant
than in languages such as C/C++. Thus, we believe we have reached
a happy medium with our null pointer analysis. We are pleased with
the quality of the defects we are reporting, and given the number
of null pointer warnings we find in existing code, we don’t want to
expand the analysis to report warnings only feasible on some paths.

The most interesting question to us is not how to lower our
false positive or false negative rate, but how to identify high-impact
null pointer bugs. Once we can do that, then trying to apply those
techniques over a larger field of null pointer bugs, including ones
FindBugs does not now report, would be of interest.

8. Acknowledgments
Thanks to David Morgenthaler for challenging us, and to all those
who have contributed to the FindBugs project. Fortify Software is
the sponsor of the FindBugs project, and additional current support
is provided by Google and Sun Microsystems.

References
[1] Apache tomcat. http://tomcat.apache.org, 2006.
[2] I. Dillig, T. Dillig, and A. Aiken. Static error detection using

semantic inconsistency inference. In Proceedings of the Conference on
Programming Language Design and Implementation, June 2007.

[3] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: a general approach to inferring errors in systems
code. In SOSP ’01: Proceedings of the eighteenth ACM symposium
on Operating systems principles, pages 57–72, New York, NY, USA,
2001. ACM Press.

[4] D. Evans. Static detection of dynamic memory errors. In PLDI ’96:
Proceedings of the ACM SIGPLAN 1996 conference on Programming
language design and implementation, pages 44–53, New York, NY,
USA, 1996. ACM Press.

[5] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tuning a
static analysis to find null pointer bugs. In PASTE ’05: The 6th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering, pages 13–19, New York, NY, USA, 2005. ACM
Press.

[6] W. Pugh. Null pointer detection microbenchmarks. http://
findbugs.googlecode.com/svn/trunk/NullPointerBenchmark/,
2006.

[7] I. Reasoning˙ Reasoning inspection service defect data report for
tomcat, version 4.1.24, January 2003. http://www.reasoning.com/pdf/
Tomcat Defect Report.pdf.


