SD Best Practices,

Squashing Bugs 200
with Static Analysis

NPT e
s N\ O William Pugh

18 / Q56 Univ. of Maryland Fi N d B U g STN'

2)
TIRYLAS

http://www.cs.umd.edu/~pugh/

http://findbugs.sourceforge.net/

http://findbugs.sourceforge.net
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net

FindBugs

® Open source static analysis tool for finding
defects in Java programs

® Analyzes classfiles
® Generates XML or text output
® can run in Netbeans/Swing/Eclipse/Ant/SCA

® TJotal downloads from SourceForge: 274,291+

What is FindBugs!

® Static analysis tool to find defects in Java code
® not a style checker

® Can find hundreds of defects in each of large apps such
as Bea WebLogic, IBM Websphere, Sun's |]DK

® real defects, stuff that should be fixed
® hundreds is conservative, probably thousands
® Doesn’t focus on security

® |ower tolerance for false positives

Common Wisdom
about Bugs

Programmers are smart
Smart people don’t make dumb mistakes

We have good techniques (e.g., unit testing, pair
programming, code inspections) for finding bugs
early

50, bugs remaining in production code must be
subtle, and require sophisticated techniques to

find

Would You Write Code
Like This?
if (in == null)
try {
1n.close();

® Oops
® This code is from Eclipse (versions 3.0 - 3.2)

® You may be surprised what is lurking in your
code

Why Do Bugs Occur!?

® Nobody is perfect

e Common types of errors:
® Misunderstood language features, APl methods

® Typos (using wrong boolean operator, forgetting
parentheses or brackets, etc.)

® Misunderstood class or method invariants

® Everyone makes syntax errors, but the compiler
catches them

® What about bugs one step removed from a syntax error?

Bug Patterns

Infinite recursive loop

® Student came to office hours, was having trouble
with his constructor:

/*%* Construct a WebSpider */

public WebSpider() {
WebSpider w = new WebSpider();

¥

® A second student had the same bug

® VWrote a detector, found 3 other students with
same bug

Double check against | DK

Found 4 infinite recursive loops
Including one written by Joshua Bloch
public String foundType() {
return this.foundType();
L
Smart people make dumb mistakes

Embrace and fix your dumb mistakes

istory

[active M dead

Sun |DK h

Infinite Recursive

289-0"9 TPl
8/9-09" TPl
+/9-0"9 TPl
0£9-0"9 TPl
999-0"9" TPl
299-0"9 TPl
859-0"9 TPl
£59-0"9 TPl
0S9-0"9 T3Pl
9+9-0"9 TPl
Z¥9-0"9 TPl
8€9-0"9 TPl
+£9-0"9 TPl
0€£9-0"9 T3Pl
929-0"9" TPl
£19-0"9" TPl
€19-0"9 TPl
po oSl O

reoa et 2
4
169-0°'5 Tipszl 0
v¥9-0'S5 psef =
9€q9-0"G TIpsel
829-0"S Tipsel
029-0"G 1Apsel
219-0°s mIpsel
0 v ipset
029-¢ ¥ 1Apsel
v19-2 v 1Apse!
909-2' ¥ 1Apsel
19-T v 1APse!
909-T ¥ 11psel
789-0't" 1Apse!
2,9-0"p TApsel
€0 1T € mipsel

ive

I inform Sun of
infini

%
=
S
2R
=
ST
=<
m.m
wn
=3
S
=

20

Loops

z2 0 1Pl

18
16
14
12
10
8
6
4
2
0

Duration of infinite recursive loop bugs in JDK

Hashcode/Equals

® Equal objects must have equal hash codes

® Programmers sometimes override equals() but not
hashCode()

® Or, override hashCode() but not equals()

® QObjects violating the contract won’t work in hash tables,
maps, sets

® Examples (53 bugs in 1.6.0-b29)

® javax.management.Attribute

® java.awt.geom.Area

12

Fixing hashCode

® What if you want to define equals, but don't think
your objects will ever get put into a HashTable!?

® Suggestion:

public int hashCode() {

assert false : "hashCode method not designed”;
return 42;

J

13

Null Pointer Dereference

® Dereferencing a null value results in
NullPointerException

® Warn if there is a statement or branch that if executed,
guarantees a NPE

® Example:
// Eclipse 3.0.0MS8
Control ¢ = getControl();
if (¢ == null && c.isDisposed())

return;

|4

More Null Pointer
Dereferences

// Eclipse 3.0.0MS8
String sig = type.getSignature();
if (sig '= null || sig.length() == 1) {

return sig;

// JDK 1.5 build 42

if (name '= null || name.length > 0) {

|5

More Null Pointer
Dereferences

javax.security.auth.kerberos.KerberosTicket, 1.5b42
// flags is a parameter
// this.flags is a field
if (flags '= null) {
if (flags.length >= NUM FLAGS)
this.flags =

else

this.flags
} else
this.flags =

if (flags[RENEWABLE TICKET FLAG]) ({

|6

Redundant Null Comparison

® Comparing a reference to null when it is definitely null
or definitely non-null

® Not harmful per se, but often indicates an inconsistency that
might be a bug

® Example (JBoss 4.0.0DR3):
protected Node findNode (Fgn fqgqn, ...) {

int treeNodeSize = ;

1f (return null;

|7

How should we fix this bug!

if (name '= null || name.length > 0)

e Should we just change it to

if (name '= null && name.length > 0)

e Will that fix it?

* We have no idea. Obviously, we've never tested the
situation when name is null.

* Try to write a test case first, then apply the obvious fix

18

Bad Binary operations

if ((f.getStyle () & Font.BOLD) == 1) {
sbuf.append ("");
1sBold = true;

¥

if ((f.getStyle () & Font.ITALIC) == 1) {
sbuf.append ("<1>");
1sItalic = true;

¥

19

Doomed Equals

public static final ASDDVersion
getASDDVersion(BigDecimal version) {

1T (SUN_APPSERVER_7_0.toString()
.equals(version))
return SUN_APPSERVER_7_0;

20

Unintended regular expression

String[] valueSegments
= value.split("."); // NOI1S8N

21

Field Self Assignment

public TagHelpItem(String name, String file,
String startText, 1nt startOffset,
String endText, int endOffset,
String textBefore, String textAfter){

N1S.nhame = name;

nis.file = file;

n1s.startText = startText;

nis.startTextOffset = startTextOffset;

n1s.endText = endText;

nis.endTextOffset = endTextOffset;

ni1s.textBefore = textBefore;

nis.textAfter = textAfter;

n1s.1dentical = null;

+

22

Bad Naming

package org.eclipse.jface.dialogs;
public abstract class Dialog extends Window {
orotected Button getOKButton() {

return getButton(IDi1alogConstants.OK_ID);

};
}

public class InputDialog extends Dialog {
orotected Button getOkButton() {

return okButton: ‘“\\\\
};

Wrong capitalization

23

Confusing/bad naming

* Methods with identical names and signatures
— but different capitalization of names

— could mean you don’t override method in
superclass

— confusing in general

e Method name same as class name
— gets confused with constructor

24

Bad naming in BCEL
(shipped in jdk|.6.0-b29)

/** @return a hash code value
*for the object.

v /
public 1nt hashcode() {

return basic_type.hashCode()
A dimensions; }

25

lsnored return values

* Lots of methods for which return value
always should be checked

— E.g., operations on immutable objects

// Eclipse 3.0.0MS8
String name= workingCopy.getName () ;
name.replace(’'/’', '.7);

26

lsnored Exception Creation

/ %
* javax.mahagement.ObjectInstance
* reference impl., version 1.2.1
% /

public ObjectInstance(ObjectName objectName,
String className) {

1f (objectName.isPattern()) {

new RuntimeOperationsException(

new IllegalArgumentException(
"Invalid name->"+ objectName.toString()));

¥
this.name = objectName;
this.className = className;

27

Inconsistent Synchronization

e Common idiom for thread safe classes is to
synchronize on the receiver object (“this”)

e We look for field accesses

— Find classes where lock on “this” is sometimes,
but not always, held

— Unsynchronized accesses, if reachable from
multiple threads, constitute a race condition

28

Inconsistent Synchronization
Example
 GNU Classpath 0.08, java.util.Vector

public int lastIndexOf (Object elem)
{

return lastIndexOf (elem, elementCount - 1) ;

}

public synchronized int lastIndexOf (
Object e, int index)

{

}

29

Unconditional Wait

* Before waiting on a monitor, the condition should
be almost always be checked

— WWaiting unconditionally almost always a bug

— |f condition checked without lock held, could miss the
notification Gt
condition can
* Example (JBoss 4.0.0DR3): become true after it
if ('enabled) { IS checked
try {
log.debug(...);) but before the
synchronized (lockS { wait occurs

lock.wait () ;
}

30

Bug Categories

Correctness
Bad Practice

— equals without hashCode, bad serialization,
comparing Strings with ==, equals should handle
null argument

Dodgy

— Dead store to local variable, load of known null
value, overbroad catch

Performance
Multithreaded correctness
Malicious code vulnerability

31

Demo

® |ive code review
® Available as Java Webstart from

® http://findbugs.sourceforge.net/demo.html

32

http://www.cs.umd.edu/~pugh/glassfish/
http://www.cs.umd.edu/~pugh/glassfish/
http://www.cs.umd.edu/~pugh/glassfish/
http://www.cs.umd.edu/~pugh/glassfish/

Warning Density

Warning density

® Density of high and medium priority correctness
warnings

Warnings/KNCSS Software

0.1 SleepyCat DB

0.3 Eclipse 3.2

0.6 JDK 1.5.0 03

0.6 JDK 1.6.0 b5

0.9 IBM WebSphere 6.0.3

Some new-ish features

some have been around for a while but aren’t well
known (or well documented)

Annotations for Software
Defect Detection

® Allow you to provide lightweight specifications
through Java 5.0 annotations

® Examples

e @NonNull
® @CheckForNull
® (@CheckReturnValue

36

JSR-305

® |SR and expert group as formed to develop
standard annotations that can be used by multiple
tools

® |ntelli] also has annotations for nullness, but they
aren’t the same

® |SR will develop standard annotations in the javax
namespace, with agreements as to their semantics

® Unofficial output: annotated versions of
standard libraries

37

Computing bug history

Keeps track of when bug are introduced, when
they are resolved

Historical bug data records all bugs reported for
any build

Can see when bugs were introduced and removed

For example, can report all bugs introduced in the
past 3 months

38

User bug designations
annotations

® Our framework and new GUI allow users to
designate specific bugs as “Must Fix” or “Not a
Bug”

® can also provide free text annotation

® When matching previous analysis results with new
analysis results, bugs are matched and annotations
carried forward

39

New GUI

® Provides user designation and annotation support
® Highlights multiple source lines

® Use dragging to reorganize | Tree

40

Command line tools

Command line tools

® We've got a lot of command line tools
® some ant tasks, need to add more

® but all the command lines tools can be
invoked from within ant

® We need to build a bigger, better tool chain
® we're open source, we welcome contributions

® Maven (contributed), Cruise control (?), ...

42

XML analysis results

® We use XML as the standard output from our
analysis engine

® XML analysis results can be filtered, processed,

displayed in the GUI, annotated, converted to text
or HTML

® XML can be plain, or with messages

® with text/messages provides all the text to
allow you to convert the XML into meaningful
HTML without further FindBugs involvement

43

findbugs

® findbugs -textui -xml rt.jar >rt.xml
® run findbugs

® using the test user interface, rather than the
GUI

® generate XML output, rather than one bug/line
® al|so have emacs output mode

® analyze all the classes in rt.jar, write the output
to rt.xml

44

filterBugs

® filterBugs -priority H -category C rt.xml hc.xml

® Read the bugs in rt.xml, filter out just the high
priority correctness bugs, and write them to
hc.xml

45

convertXmlloText

® convertXmlToText hc.xml
® convert to simple one bug/line format
® convertXmlToText -html:fancy.xsl|

® convert to html using fancy.xsl style sheet

46

listBugDatabaselnfo
& setBugDatabaselnfo

® Set information about the analysis

-name name this analysis/version
-time Give the timestamp for this analysis
-addSource add a source directory

-findSource find and add all relevant source
directories

47

unionBugs

® combine results from analyzing disjoint classes
into a single analysis file

® don’t use this if the analysis files contain
overlapping results

48

computeBugHistory

® computeBugHistory -output db.xml old.xm| new.xml
® combine the analysis results in old.xml and new.xml
® write a historical analysis to db.xml

® old.xml can be a historical analysis

49

matching old bugs
with new bugs

® We do a number of clever things (or things we
think are clever) to match warnings from an old
analysis with warnings in a new analysis

® |Line numbers don’t matter
® We err on overmatching

® if you modify a method, fixing one null pointer
bug, and introducing another in the same
method, we may think the bug hasn’t changed

50

mineBugHistory

® mineBugHistory -formatDates -noTabs db.xml

® produce a tabular listing of the number of bugs
introduced and eliminated in each build/version
in a historical analysis

51

Historical bug databases

® Each historical bug database records a sequence
of versions/builds/analysis results

® Each analysis result has a name, a date and a
sequence number (starting at 0)

52

Combing back to filterBugs

® filterBugs has lots of options

filterBugs -first 1 db.xml | convertXmlToText

® filter out just the warnings that first appeared in
sequence # | (the second analysis results), and convert
the results to text

53

Importing bugs into your own
bug databases

if you want to bring our results into a database
® generate xml with messages

® use instance-hash

® designed to be unique per bug, and match
bugs across versions

® Not as clever as the approach we use when
matching XML, but still clever

54

FindBugs
Best Practices

What to look at

® First review high and medium priority correctness
® | ow priority warnings can be of questionable value
® FindBugs doesn’t report these by default

® more there for us to work to improve our
accuracy, and figure out how to raise the priority of
the important ones and drop the unimportant ones

® Other categories worth examining in a code review,
but insisting that they all be reviewed immediately will

make people unhappy

56

Compile with debugging
information

® We produce more accurate results and more
meaningful messages if the classfiles contain both
line numbers and local variable names

® use javac -g

® |f you are computing historical information, be
consistent with whether you generate debugging
information

57

FindBugs plugins

® Carefully consider and review open source
FindBugs plugins

® Others have written plugins, some of which
generate a lot more false positives or give bad
advice

® You can write your own plugins

® particularly great if you have bugs that are
specific to your project

58

Incremental analysis
and/or marking

® For sustainable use, you need to have some way
to deal with false positives

® mark in database
® Only review new warnings

® Both of these require matching warnings from
one analysis with results from a previous analysis

59

Developers like incremental
analysis

® Developers don'’t like to be asked to scrub a
million line code base and review 1000 warnings

® But they don’t mind (as much) if you ask them to
review a new warning introduced by a change
they just made

® false positive rate still matters

60

Questions!

