
FindBugs

William Pugh

Univ. of Maryland

http://www.cs.umd.edu/~pugh/

http://findbugs.sourceforge.net/

ITA Software &
MIT, September

2006

http://findbugs.sourceforge.net
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net

FindBugs

• Open source static analysis tool for finding
defects in Java programs

• Analyzes classfiles

• Generates XML or text output

• can run in Netbeans/Swing/Eclipse/Ant/SCA

• Total downloads from SourceForge: 274,291+

2

What is FindBugs?
• Static analysis tool to find defects in Java code

• not a style checker

• Can find hundreds of defects in each of large apps such
as Bea WebLogic, IBM Websphere, Sun's JDK

• real defects, stuff that should be fixed

• hundreds is conservative, probably thousands

• Doesn’t focus on security

• lower tolerance for false positives
3

Common Wisdom
about Bugs

• Programmers are smart

• Smart people don’t make dumb mistakes

• We have good techniques (e.g., unit testing, pair
programming, code inspections) for finding bugs
early

• So, bugs remaining in production code must be
subtle, and require sophisticated techniques to
find

4

Would You Write Code
Like This?

 if (in == null)

 try {

 in.close();

 ...

• Oops

• This code is from Eclipse (versions 3.0 - 3.2)

• You may be surprised what is lurking in your
code

5

6

Why Do Bugs Occur?

• Nobody is perfect

• Common types of errors:

• Misunderstood language features, API methods

• Typos (using wrong boolean operator, forgetting
parentheses or brackets, etc.)

• Misunderstood class or method invariants

• Everyone makes syntax errors, but the compiler
catches them

• What about bugs one step removed from a syntax error?

Bug Patterns

Infinite recursive loop
• Student came to office hours, was having trouble

with his constructor:

/** Construct a WebSpider */

public WebSpider() {
 WebSpider w = new WebSpider();

 }

• A second student had the same bug

• Wrote a detector, found 3 other students with
same bug

8

Double check against JDK

• Found 4 infinite recursive loops

• Including one written by Joshua Bloch

 public String foundType() {

 return this.foundType();

 }

• Smart people make dumb mistakes

• Embrace and fix your dumb mistakes

9

0

2

4

6

8

10

12

14

16

18

20

jd
k
1
.0
.2

j2
s
d
k
1
_
3
_
1
_
0
3

j2
s
d
k
1
.4
.0
-b
7
2

j2
s
d
k
1
.4
.0
-b
8
2

j2
s
d
k
1
.4
.1
-b
0
6

j2
s
d
k
1
.4
.1
-b
1
4

j2
s
d
k
1
.4
.2
-b
0
6

j2
s
d
k
1
.4
.2
-b
1
4

j2
s
d
k
1
.4
.2
-b
2
0

j2
s
d
k
1
.4
.2
_
0
4

j2
s
d
k
1
.5
.0
-b
1
2

j2
s
d
k
1
.5
.0
-b
2
0

j2
s
d
k
1
.5
.0
-b
2
8

j2
s
d
k
1
.5
.0
-b
3
6

j2
s
d
k
1
.5
.0
-b
4
4

j2
s
d
k
1
.5
.0
-b
5
1

j2
s
d
k
1
.5
.0
-b
5
8

j2
s
d
k
1
.5
.0
-b
6
4

jd
k
1
.5
.0
_
0
4

jd
k
1
.6
.0
-b
1
3

jd
k
1
.6
.0
-b
1
7

jd
k
1
.6
.0
-b
2
6

jd
k
1
.6
.0
-b
3
0

jd
k
1
.6
.0
-b
3
4

jd
k
1
.6
.0
-b
3
8

jd
k
1
.6
.0
-b
4
2

jd
k
1
.6
.0
-b
4
6

jd
k
1
.6
.0
-b
5
0

jd
k
1
.6
.0
-b
5
4

jd
k
1
.6
.0
-b
5
8

jd
k
1
.6
.0
-b
6
2

jd
k
1
.6
.0
-b
6
6

jd
k
1
.6
.0
-b
7
0

jd
k
1
.6
.0
-b
7
4

jd
k
1
.6
.0
-b
7
8

jd
k
1
.6
.0
-b
8
2

active dead

I inform Sun of
infinite recursive

loops in their code

JDK build

Infinite Recursive
Loops: Sun JDK history

Duration of infinite recursive loop bugs in JDK

12

Hashcode/Equals

• Equal objects must have equal hash codes

• Programmers sometimes override equals() but not
hashCode()

• Or, override hashCode() but not equals()

• Objects violating the contract won’t work in hash tables,
maps, sets

• Examples (53 bugs in 1.6.0-b29)

• javax.management.Attribute

• java.awt.geom.Area

Fixing hashCode

• What if you want to define equals, but don't think
your objects will ever get put into a HashTable?

• Suggestion:

public int hashCode() {
 assert false : "hashCode method not designed";
 return 42;
 }

13

14

Null Pointer Dereference

• Dereferencing a null value results in
NullPointerException

• Warn if there is a statement or branch that if executed,
guarantees a NPE

• Example:
// Eclipse 3.0.0M8

Control c = getControl();

if (c == null && c.isDisposed())

 return;

Bad Binary operations

 if ((f.getStyle () & Font.BOLD) == 1) {
 sbuf.append ("");
 isBold = true;
 }

if ((f.getStyle () & Font.ITALIC) == 1) {
 sbuf.append ("<i>");
 isItalic = true;
 }

15

Doomed Equals

public static final ASDDVersion
 getASDDVersion(BigDecimal version) {

if(SUN_APPSERVER_7_0.toString()
 .equals(version))
 return SUN_APPSERVER_7_0;

16

Unintended regular expression

String[] valueSegments
 = value.split("."); // NOI18N

17

Field Self Assignment

 public TagHelpItem(String name, String file,
 String startText, int startOffset,
 String endText, int endOffset,
 String textBefore, String textAfter){
 this.name = name;
 this.file = file;
 this.startText = startText;
 this.startTextOffset = startTextOffset;
 this.endText = endText;
 this.endTextOffset = endTextOffset;
 this.textBefore = textBefore;
 this.textAfter = textAfter;
 this.identical = null;
 }

18

19

Bad Naming

package org.eclipse.jface.dialogs;

public abstract class Dialog extends Window {

 protected Button getOKButton() {

 return getButton(IDialogConstants.OK_ID);

 };
}

public class InputDialog extends Dialog {

 protected Button getOkButton() {

 return okButton;

 };

}
Wrong capitalization

20

Confusing/bad naming

• Methods with identical names and signatures
– but different capitalization of names
– could mean you don’t override method in

superclass
– confusing in general

• Method name same as class name
– gets confused with constructor

Bad naming in BCEL
(shipped in jdk1.6.0-b29)

/** @return a hash code value
 *for the object.

 */

public int hashcode() {
 return basic_type.hashCode()
 ^ dimensions; }

21

22

Ignored return values

• Lots of methods for which return value
always should be checked
– E.g., operations on immutable objects

// Eclipse 3.0.0M8
String name= workingCopy.getName();
name.replace(’/’, ’.’);

Ignored Exception Creation
/**
 * javax.management.ObjectInstance
 * reference impl., version 1.2.1
 **/
 public ObjectInstance(ObjectName objectName,
 String className) {
 if (objectName.isPattern()) {
 new RuntimeOperationsException(
 new IllegalArgumentException(
 "Invalid name->"+ objectName.toString()));
 }
 this.name = objectName;
 this.className = className;
 }

23

24

Inconsistent Synchronization

• Common idiom for thread safe classes is to
synchronize on the receiver object (“this”)

• We look for field accesses
– Find classes where lock on “this” is sometimes,

but not always, held
– Unsynchronized accesses, if reachable from

multiple threads, constitute a race condition

25

Inconsistent Synchronization
Example

• GNU Classpath 0.08, java.util.Vector

public int lastIndexOf(Object elem)
{
 return lastIndexOf(elem, elementCount – 1);
}

public synchronized int lastIndexOf(
 Object e, int index)
{
 ...
}

26

Unconditional Wait

• Before waiting on a monitor, the condition should
be almost always be checked
– Waiting unconditionally almost always a bug
– If condition checked without lock held, could miss the

notification

• Example (JBoss 4.0.0DR3):
if (!enabled) {
 try {
 log.debug(...);
 synchronized (lock) {
 lock.wait();
 }

condition can
become true after it
is checked

but before the
wait occurs

Bug Categories
• Correctness
• Bad Practice

– equals without hashCode, bad serialization,
comparing Strings with ==, equals should handle
null argument

• Dodgy
– Dead store to local variable, load of known null

value, overbroad catch

• Performance
• Multithreaded correctness
• Malicious code vulnerability

27

Demo

• Live code review

• Available as Java Webstart from

• http://findbugs.cs.umd.edu/demo/

• http://findbugs.sourceforge.net/demo.html

28

http://www.cs.umd.edu/~pugh/glassfish/
http://www.cs.umd.edu/~pugh/glassfish/
http://www.cs.umd.edu/~pugh/glassfish/
http://www.cs.umd.edu/~pugh/glassfish/

Warning Density

Warning density
• Density of high and medium priority correctness

warnings

Warnings/KNCSS Software
0.1 SleepyCat DB

0.3 Eclipse 3.2

0.6 JDK 1.5.0_03

0.6 JDK 1.6.0 b51

0.9 IBM WebSphere 6.0.3
30

How we do it

Some detectors are simple

• But specific

• Looking for ignored return values is easy

• once you know what methods to look at

• value.split(“.”) also pretty easy

• Experience, taste, and access to lots of bugs is
what you need

32

Some are harder

• Finding uses of .equals to compare two objects of
different types

• requires a type analysis

• We do fairly simple analysis: very little
interprocedural code analysis

33

Null pointer analysis

• Where we do a lot of work

• Want to avoid false positives

• Big issue: infeasible paths

34

An infeasible path?

private int f(Object x, boolean b) {
 int result = 0;
 if (x == null) result++;
 else result--;
 // at this point, we know x is null on a simple path
 if (b) {
 // at this point, x is only null on a complex path
 // we don't know if the path in which x is null
 // and b is true is feasible
 return result + x.hashCode();
 }
 return result;
}

35

First attempt

• Don’t worry about infeasible paths

• Only report null pointer exceptions that would
occur if every statement and branch is covered

• This finds a lot of bugs!

• with a very low false positive rate

36

The primary lesson

• You don’t have to be clever to find stupid
mistakes

• being stupid works pretty well

37

A “false” positive
XMLEvent getXMLEvent(XMLStreamReader reader){

EventBase event = null;
switch(reader.getEventType()){
 case XMLEvent.START_ELEMENT:
 event = ...;
 break;
 case XMLEvent.END_ELEMENT:
 event = ...;
 break;
 }
event.setLocation(reader.getLocation());
return event ;
}

Missing default

Null pointer exception
38

But clever can find more

• We wanted to find more null pointer bugs

• wanted to do better than commercial tools that
cost $250K

• So we look for situations where a value is known
to be null at some statement or branch

• and the value is guaranteed to be dereferenced on
all paths to exit

39

A Guaranteed Dereference
public int f(Object x, boolean b) {
 int result = 0;
 if (x == null) result++;
 else result--;
 // at this point, we know x is null on a simple path
 if (b) {
 // at this point, x is only null on a complex path
 // we don't know if the path in which x is null
 // and b is true is feasible
 return result + x.hashCode();
 }
 else {
 // at this point, x is only null on a complex path
 // we don't know if the path in which x is null
 // and b is false is feasible
 return result - x.hashCode();
 }
}

40

Advantages of not
being too clever

• If your analysis tries to be very clever, and do
context sensitive alias resolution and
interprocedural analysis

• any developer is going to have to duplicate that
analysis to understand your bug report

• they need to be able to understand it in order to
fix it

41

Overall improvements

• We put a lot of effort into improving our null
pointer analysis

• field tracking

• guaranteed dereferences

• FindBugs 1.1 finds about twice as many null
pointer bugs as FindBugs 1.0

• without an increase in false positives
42

The questions I want
to answer

What is the fruit distribution?

• FindBugs looks for low hanging fruit

• Where is the best place to expend effort to find
more bugs?

• Use more sophisticated analysis to find more
subtle errors

• Build more shallow and general bug detectors

• Write application-specific bug detectors

44

What kinds of errors can be
detected by static analysis?

• I never would have thought to look for recursive
infinite loops

• Or doing an integer division, converting the result
to a double, and passing the result to Math.ceil

• Easy to measure false positives, hard to measure
false negatives:

• defects that could be detected by static analysis
but aren’t

45

Turning bug instances
into bug patterns

• We need to change our software development
process so that we learn from our mistakes

• Evaluate bugs, see if they can be turned into bug
patterns

• many bug patterns manifest themselves over
and over again

• Example: the flaw identified in most binary search
implementations

46

Examples of turning bugs
into bug patterns

• I read through all the bugs fixed in each build of
Sun’s JDK

• Example: In build 89, they fixed a serialization bug
in ArrayBlockingQueue

• In 5 hours of work, I wrote and tuned a bug
detector for that bug pattern

• Found 17 other erroneous classes in the JDK

47

Specific details of bug

• Class was serializable, but had a transient field

• that wasn’t reset by a readObject or readResolve
method

• Had to tweak priorities for detector

• raise priority if set to non-default value in
constructor, or if set in multiple places

48

How can we make it easy to
write bug detectors?

• We want to allow as many developers as possible
to write their own bug detectors

• some will be generally applicable, some specific
to particular projects

• What tools/analysis/pattern languages do we
need?

• now starting to have enough samples to think
about this

49

How can we make static
analysis pervasive?

• State of the art static analysis has a lot to offer,
more than many people suspected

• What are the practical and cultural issues that
need to be surmounted to make it pervasive?

• false positive suppression: no one wants to
review a false positive more than once

• other points of pain?

50

My Other Cool Project

Marmoset: an
advanced project
testing framework

Marmoset

A total rethinking of how student
programming projects are submitted and tested

designed to provide students, instructors and
researchers with lots of feedback, including
feedback before submission deadline

Collecting large data sets of student efforts,
starting to learn lots of stuff about how students
learn to program

Previous Practice

Everyone agrees we can't just distribute all the test
cases to students

Instructor has secret test cases

sometimes not made up until time to grade the
project

Student code run against secret tests by TA after
project deadline

Release Testing

If a submission passing all of the public tests,
students are given the option to release test their
submission

given limited information from a release test

limited opportunities for release tests

Marmoset

Students are told # of release tests passed and
failed

and names of first two release tests that failed

For example, on Poker project, might be told that they
“fail FourOfAKind, FullHouse, and 2 other tests”

Release testing consumes a token

students receive 2-3 tokens

tokens regenerate 24 hours after used

Advantages of
release testing

Encourages students to think, develop their own tests

Gives students an indication of where they are,
whether that are having trouble

Gives students an incentive to start working early

Instructors get live feedback about student progress
before project deadline

Marmoset Research Study

Students asked consent to participate in research
study

Eclipse plugin captures each save as students work
on their projects

Research database of more than 200,000 snapshots,
each of which is run against all the test cases

ask questions such as what leads to null pointer
exceptions in student code

Marmoset data
From 4 semesters of a CS 2 course

147,595 snapshots of student work

2,171,812 unit test runs

Exceptions include:

31,454 null pointer exceptions
8,122 class cast exceptions
5,453 index out of bounds
4,996 array index out of bounds
3,754 stack overflows

Questions?

